

## MATHEMATICS CURRICULUM

'Mathematics is not about numbers, equations, computations, or algorithms. it is about understanding'

Wülliam Paul Thurston

## Mathematics: Intent

## Purpose

Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. Therefore, a high-quality mathematics education provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject.

## Aims

The National Curriculum for Mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practise with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas.
The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage.

Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

## Curriculum Implementation

At Nascot Wood Junior School, children study mathematics daily, covering a broad and balanced mathematical curriculum including elements of number, calculation, geometry, measures and statistics. Alongside daily mathematics lessons, we aim to teach mathematics in a cross-curricular manner as well as discretely to teach the practical application of mathematical skills. This is due to the interconnected nature of mathematics. We focus not only on the mathematical methods but also on mathematical vocabulary and to use Maths Mastery to broaden and deepen mathematical understanding.

We aim for each child to be confident in their yearly objectives and develop their ability to use this knowledge to develop a greater depth understanding to solve varied fluency problems as well as problem solving and reasoning questions. Although we have the Herts for Learning Essential Planning as the backbone of our mathematics teaching, we use a range of textbooks and online resources throughout the school to ensure a curriculum that is specific to each child's learning needs. Parents are encouraged to subscribe to the on line programme, Maths Whizz, which aims to build pupil engagement and consolidate mathematical knowledge.

From the 2019/20 academic year onwards, schools in England will be required to administer an online multiplication tables check (MTC) to year 4 pupils. The purpose of the MTC is to determine whether pupils can recall their times tables fluently, which is essential for future success in mathematics. It will help schools to identify pupils who have not yet mastered their times tables, so that additional support can be provided. To support the children with their multiplication practice we use 'Times Table Rockstars' as an online and fun learning platform which also offer resources to be used in the classroom. We also use concrete modelling and monitor progress using times table grids. Please note that the school was used to pilot the online multiplication tables check.

## The Year 3 Learner

## Working mathematically

By the end of year 3, children will talk about their mathematics using the numbers they are familiar with, applying their understanding of number, measures and shape to a greater range of problems. They will make decisions about calculations and information that is needed to solve problems, for example when a recipe for two people needs to be doubled to make a recipe for four. Children will be expected to prove their thinking through pictures, jottings and conversations. They will be encouraged to pose their own questions, working in an organised way to solve them which will help pupils to identify common patterns or any errors more easily.

## Number

## - Counting and understanding numbers

Children will be very familiar with numbers that have 3 digits and will have experienced many opportunities to order, compare and show them in different ways using apparatus such as a tape measure, a 100 grid or money. Using their understanding of place value (how the value of each digit changes depending on its position in the number), children will be able to partition (break and make) numbers in different ways e.g. $234=200$ and 30 and 4; 100 and 100 and 20 and 10 and 4 ; or 200 and 20 and 14 . They will develop a secure understanding of numbers up to 1000 and will count beyond it in $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s . They will use this counting to help find 10 or 100 more than any given number.
Children will be introduced to numbers with one decimal place and will count up and down in tenths; share groups of objects or shapes into tenths and represent these in pictures and using hands-on resources.
Children will count forwards and backwards from 0 in steps of $4,8,50$ and 100 and link this to multiplication and division. They will also count in 3 s to help maintain their fluency from Year 2.

- Calculating

Children will continue to develop their mental calculation skills to add and subtract combinations of three-digit numbers e.g. $248+/-8 ; 319+/-40 ; 428+/-200$. They will develop their range of strategies using jottings (sketches and notes to help them remember the steps) and number lines to help them understand how each calculation works. Children will share their methods with others to help them see which work best, are quickest and most accurate. Children will understand the importance of estimation when calculating to see if their answer is reasonable or not. They will recall their multiplication and division facts for 3,4 and $8 x$ tables and be supported to see the links between the 2,4 and $8 x$ tables. They explore patterns and rules for the times tables they learn and will use pictures and objects to support their understanding. They will also learn that multiplication can be done in any order e.g. $3 \times 4 \times 2=2 \times 3 \times 4$. Children will be introduced to more formal methods of recording addition and subtraction, including column methods. They will use hands-on resources to secure their understanding of these methods. This will be applied to numbers up to three digits. Children who become very adept at these calculations will be stretched through problems such as those involving missing numbers so that they know when, if and why they need to use these methods.

Children will develop their understanding of multiplication and division and apply their times table knowledge to multiply 2-digit by 1-digit numbers using the skills of partitioning (breaking and making numbers). For example, $43 \times 5$ can also be thought of as $40 \times 5$ and $3 \times 5$ or $(4 \times 5 \times 10)+(3 \times 5)$. They will move from informal methods of calculating multiplication and division to formal written methods i.e. short column multiplication and be supported by using hands-on resources.

- Fractions

Children will develop their understanding of fractions and decimals and will be introduced to tenths. They will count and understand tenths as ten equal parts as well as through dividing sets of objects into ten equal parts / groups. They will find and write fractions of objects using their multiplication tables knowledge, e.g. $1 / 5$ of a group of 20 buttons can be solved by $20 \div 5=4$, and will continue to explore equivalent fractions using diagrams to explain their understanding e.g. $2 / 4$ is equivalent to or of equal value to $4 / 8$. They will also begin to add and subtract fractions where the denominator is the same e.g. $4 / 6+1 / 6=5 / 6$.

## Measurement

Children will continue to measure, compare, add and subtract measurements and progress to mixed units e.g. expressing amounts as litres and millilitres -2 litres 400 ml . They will measure the perimeter of 2-D shapes and will continue to add and subtract amounts of money including giving change. Children will estimate and read time to the nearest minute on analogue and digital clock faces. They will be introduced to the Roman numerals I to XII to help with this. Problem solving and calculating with time will involve comparing the duration of events such as the length of favourite television programme or journeys to school. They will use language with increasing accuracy, such as seconds, minutes and hours; o'clock, a.m. / p.m., morning, afternoon, noon and midnight. They will need to recall the number of seconds in a minute and the number of days in each month, year and leap year.

## Geometry

Children will accurately draw 2-D shapes with rulers measuring sides accurately.
They will make 3-D shapes to help them understand how they are composed and will recognise 3-D shapes in a range of places and contexts (e.g. buildings, packages) and use correct mathematical vocabulary to describe them. They will learn what a right angle is and know that two right angles make a half-turn, three make three quarters of a turn and four a complete turn as well as identify whether angles are greater than or less than a right angle. They will also be able to identify horizontal and vertical lines and pairs of perpendicular (L) and parallel lines (=).

## Statistics

Children will collect, organise, answer and pose questions about information using bar charts, pictograms and tables to answer questions such as 'how many more children prefer football to cricket?'.

## Number and place value

Pupils should be taught to:

## Addition and

upils should be taught to:
count from 0 in
multiples of $4,8,50$ and
100 ; find 10 or 100 more or less than a given number
recognise the place value of each digit in a three-digit number (hundreds, tens, ones)
compare and order numbers up to 1000
identify, represent and estimate numbers using different representations
read and write numbers up to 1000 in numerals and in words
solve number problems and practical problems nvolving these ideas

## Multiplication and division

Pupils should be taught to
recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods
solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects
Fract
Pupil
count
tenth
tenth
an ob
parts
digit
quan
recog
fracti
of ob
and n
small
recog
as nu
and n
small
recog

Pupils should be taught to:
count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing onedigit numbers or quantities by 10
recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators
recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
recognise and show, using diagrams, equivalent fractions with small denominators
add and subtract fractions with the same denominator within one whole (for example, ${ }^{5} / 7+$
$1 / 7=6 / 7$ )
compare and order unit fractions, and fractions
with the same
denominators
solve problems that
involve all of the above

| Geometry: properties shapes | Statistics |
| :---: | :---: |
|  | Pu |
| Pupils should be taught to: | interpret and present data |
| 3-D shapes using modelling | and tables |
| shapes in different orientations and describe them | solve one-step and two-step questions[ for example, 'How many more?' and |
| property of shape or a description of a turn | 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables |

identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle
identify horizontal and vertical lines and pairs of perpendicular and parallel lines

## Statistics

Pupils should be taught to: interpret and present data using bar charts, pictograms
solve one-step and two-step questions[ for example "How many fewer? usin information presented in pictograms and tables

## Measurement <br> Pupils should be taught to:

measure, compare, add and subtract: lengths
(m/cm/mm); mass (kg/g);
volume/capacity (l/ml)
measure the perimeter of simple 2-D shapes
add and subtract amounts of money to give change, using both $£$ and $p$ in practical contexts
tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24hour clocks
estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight
know the number of seconds in a minute and the number of days in each month, year and leap year
compare durations of events [for example to calculate the time taken by particular events or tasks]

## Number and place value <br> Pupils now use multiples

 of $2,3,4,5,8,10,50$ and 100 .They use larger numbers to at least 1000, applying partitioning related to place value using varied and increasingly complex problems, building on work in year 2 (for example, 146 = 100 and 40 and $6,146=130$ and 16).

Using a variety of representations including those related to measure, pupils continue to count in ones, tens and hundreds, so that they become fluent in the order and place value of numbers to 1000.

## Multiplication and division

Pupils continue to practise their mental recall of multiplication tables when they are calculating mathematical statements in order to improve fluency. Through doubling, they connect the 2, 4 and 8 multiplication tables.

Pupils develop efficient mental methods, for example, using commutativity and associativity (for example, $4 \times 12 \times 5=4 \times 5 \times$ $12=20 \times 12=240$ ) and multiplication and division facts (for example, using $3 \times 2=6,6 \div 3$ $=2$ and $2=6 \div 3$ ) to derive related facts $(30 \times 2=60,60 \div 3=20$ and $20=60 \div 3)$.

Pupils develop reliable written methods for multiplication and division, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short multiplication and division

Pupils solve simple problems in contexts, deciding which of the four operations to use and why. These include measuring and scaling contexts, (for example, four times as high, eight times as long etc.) and correspondence problems in which $m$ objects are connected to n objects (for example, 3 hats and 4 coats, how many different outfits?; 12 sweets shared equally between 4 children; 4 cakes shared equally between 8 children).

Pupils continue to measure using the appropriate tools and units, progressing to using a wider range of measures, including comparing and using mixed units (for example, 1 kg and 200 g ) and simple equivalents of mixed units (for example, $5 \mathrm{~m}=500 \mathrm{~cm}$ ).

The comparison of measures should also include simple scaling by integers (for example, a given quantity or measure is twice as long or five times as high) and this connects to multiplication

Pupils continue to become fluent in recognising the value of coins, by adding and subtracting amounts, including mixed units, and giving change using manageable amounts. They record $£$ and $p$ separately. The decimal recording of money is introduced formally in year 4.

Pupils use both analogue and digital 12-hour clocks and record their times. In this way they become fluent in and prepared for using digital 24-hour clocks in year 4.

## Statistics

Pupils understand and use simple scales (for example, $2,5,10$ units per cm ) in pictograms and bar charts with increasing accuracy.

They continue to interpret data presented in many contexts.

## The Year 4 Learner

## Working mathematically

By the end of year 4, children will apply their understanding of maths to solve a wide variety of problems with more than one step and be expected to prove their thinking through pictures, jottings and conversations. They will continue to make connections between different areas of maths and ask their own questions, working in an organised way to find solutions which help them identify common patterns or any errors more easily.

## Number

## - Counting and understanding numbers

Children will be very familiar with numbers that have up to 4 digits and will be able to order and compare by showing them in different ways such as on a tape measure or using hands-on resources. Using their understanding of place value (how the value of each digit changes depending on its position in the number), children will be able to partition (break and make) numbers in different ways e.g. $2345=2000$ and 300 and 40 and 5 but could also represent this as 1000 and 1000 and 200 and 100 and 40 and 5 or 2000 and 200 and 145 . They will work with numbers securely up to 10,000 and may begin to count beyond in $1 \mathrm{~s}, 10$ s, 100 s and 1000s. They will use this to help them find 10,100 or 1000 more or less than any given number. They will multiply and divide whole numbers by 10 and 100 and understand that this changes the value of each digit rather than 'just adding a 0 '. They will develop their understanding to decimal hundredths, comparing and ordering these using contexts such as money. Children will also learn about the pattern to find any Roman numeral to 100 .
Children will develop their expertise when counting forwards and backwards from 0 to include multiples of $6,7,9$ and 25 ; decimals with up to 2 places and fractions. They will be able to fluently count in tenths, hundredths and simple fractions. They will develop their understanding of negative numbers through counting backwards through 0 . Children will be able to recognise and describe number patterns and relationships including multiples (e.g. 3, 6, 9,12 are multiples of 3 ) and factor pairs (e.g. 1 and 12,2 and 6, 3 and 4 are all factor pairs for 12 ) for known times tables.

## - Calculating

Children will develop various strategies for solving $+,-, x, \div$ calculations mentally, using jottings when appropriate and for checking that their answers are sensible. Children will be encouraged to share their methods with others to help them see which work best, are quickest and most accurate. Over the course of the year, children will become fluent in all multiplication and division facts up to $12 \times 12$ and apply these facts to other problems e.g. $232 \times 7=(200 \times 7)+(30 \times 7)+(2 \times 7)$. Children will use the $=$ sign to demonstrate equal value e.g. $3 \times 8=48 \div 2$ and solve missing number problems e.g. $3 \times$ ? $=48 \div 2$. They will explore patterns and rules for the times tables they learn and use pictures and objects to support their understanding.
Children will be required to solve problems accurately using the column addition and subtraction methods for numbers with up to 4-digits and explain how the methods work. They will use apparatus to secure their understanding of these. This will include addition and subtraction calculations with different numbers of digits (such as $1286+357$ ); and numbers containing 0 s (such as $8009-3231$ ). They will use formal written methods of short multiplication and short division for
two and three digit numbers by a single digit. Children who become very adept at these types of calculations will be stretched through problems such as those containing missing numbers so that they know when, if and why they need to use the methods.

## - Fractions including decimals

Children will develop their understanding of fractions by comparing to, or finding a part of, the whole. Through hands-on resources, pictures or jottings, such as a number line, children will add and subtract two fractions with the same denominator (e.g. $2 / 3+2 / 3$ ). Children will solve problems involving fractions such as 'find $3 / 4$ of 20 litres' using their knowledge of multiplication and division and through practical equipment. Children secure their understanding that fractions and decimals are different ways of expressing numbers and proportions.

## Measurement

Children secure their understanding of place value and decimals to record measurements accurately. They use their understanding of multiplying and dividing by 10,100 and 1000 to convert between different units of measure of length ( $\mathrm{km}, \mathrm{m}, \mathrm{cm}, \mathrm{mm}$ ), weight ( $\mathrm{kg}, \mathrm{g}$ ) and money ( f and p ). Children will link their understanding of area to multiplication and describe how to find the perimeter of a rectangle quickly. Children will read and write the time accurately using analogue and digital clocks, including clocks with Roman numerals. They will convert between units of time (hours, minutes and seconds). Children estimate, compare, calculate and solve a variety of problems involving all units of measurement.

## Geometry

Children will extend their knowledge of shape to include more unusual quadrilaterals (four-sided shapes) and triangles. They will use increasingly more specific vocabulary such as parallelogram, rhombus and trapezium; scalene and isosceles. They refine their understanding of symmetry and solve problems where the shape is not displayed in its usual way (e.g. it might be on its side). Children find and name different angles and use this information to decide if a shape is regular or irregular. Children describe position and movement on a grid as co-ordinates and will plot points to draw 2-D shapes.

## Statistics

Children will complete, read and interpret information on bar charts; they will solve problems that involve finding information in charts, tables and graphs; including time graphs.


## Number and place value

Using a variety of representations, including measures, pupils become fluent in the order and place value of numbers beyond 1000, including counting in tens and hundreds, and maintaining fluency in other multiples through varied and frequent practice.

They begin to extend their knowledge of the number system to include the decim numbers and fractions that they have met so far.

They connect estimation and rounding numbers to the use of measuring instruments.

Roman numerals should be put in their historical context so pupils understand that there have been different ways o write whole numbers and that the important concepts of zero and place value were introduced over a period of time.

## Addition and

 subtractionPupils continue to practise both mental methods and columnar addition and subtraction with increasingly lar numbers to aid fluency (see Mathematics Appendix 1).

Pupils continue to practise recalling and using multiplication tables and related division facts to aid fluency. Pupils practise mental methods and extend this to three-digit numbers to derive facts (for example $600 \div 3=200$ can be derived from $2 \times 3=6$ ) Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers (see Mathematics Appendix 1)

Pupils write statements about the equality of expressions (for example, use the distributive law $39 \times 7=30 \times 7+9 \times 7$ and associative law $(2 \times 3) \times 4=2 \times$ $(3 \times 4)$ ). They combine their knowledge of number facts and rules of arithmetic to solve mental and written calculations for example, $2 \times 6 \times 5=10 \times 6=$ 60.

Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as the numbers of choices of a meal on a menu, or three cakes shared equally between 10 children.

Pupils should connect hundredths to tenths and place value and decimal measure.

They extend the use of the number line to connect fractions, numbers and measures.

Pupils understand the relation between non-unit fractions and multiplication and division of quantities, with particular emphasis on tenths and hundredths

Pupils make connections between fractions of a length, of a shape and as a representation of one whole or set of quantities. Pupils use factors and multiples to recognise equivalent fractions and
simplify where appropriate (for example, ${ }^{6} /{ }_{9}=2 / 3$ or $^{1} /{ }_{4}=2 / 8$ ).
upils continue to practice adding and
subtracting fractions with the same denominator, to become fluent through a variety of increasingly complex problems beyond one whole.

Pupils are taught throughout that decimals and fractions are different ways of expressing numbers and proportions.
'upils' understanding of the number system and decimal place value is extended at this stage to tenths and then hundredths. This includes relating the decimal notation to division of whole number by 10 and later 100.

They practise counting using simple fractions and decimal fractions, both forwards and backwards.

Pupils learn decimal notation and the language ssociated with it, including in the context of measurements. They make comparisons and order decimal amounts and quantities that are expressed to the same number of decimal places They should be able to represent numbers with one or two decimal places in several ways, such as on number lines

Measurement
Pupils build on their understanding of place value and decimal notation to record metric measures, including money.

They use multiplication to convert from larger to smaller units

Perimeter can be expressed algebraically as $2(a+b)$ where $a$ and $b$ are the dimensions in the same unit. arrays and multiplication.

## Geometry of shape

Pupils continue to classify shapes using geometrical properties, extending to classifying different triangles (for example, isosceles, equilateral, scalene) and quadrilaterals (for example, parallelogram, rhombus, trapezium)

Pupils compare and order angles in preparation for using a protractor and compare lengths and angles to decide if a polygon is regular or irregular.

Pupils draw symmetric patterns using a variety of media to become familiar with different orientations of lines of symmetry; and recognise line ymmetry in a variety of diagrams, including where the line of symmetry does not dissect the origina shape.

Geometry: position
and direction
Pupils draw a pair of axes in one quadrant, with equal scales and integer labels. They read, write and use pairs of coordinates, for example $(2,5)$, including using coordinate-plotting ICT tools.

## The Year 5 Learner

## Working mathematically

By the end of year 5, children will apply their mathematical experiences to explore ideas and raise relevant questions, constructing complex explanations and reasoned arguments. They will be able to solve a wide variety of complex problems which require sustained concentration and demand efficient written and mental methods of calculations. These will include problems relating to fractions, scaling (times as many), converting between units of measure and employ all four operations ( $+,-, x, \div$ ).

## Number

- Counting and understanding numbers

Children extend and apply their knowledge of place value for numbers up to one million, rounding, estimating and comparing them (including decimals and negative numbers) in a variety of situations. They are introduced to powers of ten and are able to count forwards or backwards from any number (for example, -$50,-5 \ldots 5,50,500,5000 \ldots$...) Through investigations, they will discover special numbers including factors, primes, square and cube numbers.

- Calculating

Children will be fluent in a wide range of mental calculation strategies for all operations and will select the most appropriate method dependent on the calculation. They apply their knowledge of place value fluently to multiply and divide numbers (including decimals) by 10, 100 and 1000. When mental methods are not appropriate, they use formal written methods of addition and subtraction accurately. They continue to develop their understanding of the formal methods through hands-on resources and use their known facts within long multiplication (up to 4 digit numbers by 2 digit numbers e.g. $2345 \times 68$ ) and short division (up to 4 digit numbers by 1 digit number e.g. $2345 \div 7$ ) which may result in remainders. They solve multi-step problems in meaningful contexts and decide which operations to use.

## - Fractions including decimals and percentages

Children secure their strong understanding that fractions express a proportion of amounts and quantities (such as measurements), shapes and other visual representations. Children extend their knowledge and understanding of the connections between fractions and decimals to also include percentages. They will be able to derive simple equivalences (e.g. $67 \%=67 / 100=0.67$ ) and recall percentage and decimal equivalents for $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and fractions with a denominator of a multiple of 10 or 25 (e.g. $25 \%=25 / 100$ ).
They order, add and subtract fractions, including mixed numbers and those whose denominators are multiples of the same number, for example $\frac{3}{10}+\frac{1}{5}=\frac{3}{10}+\frac{2}{10}=$ $\frac{5}{10}=\frac{1}{2}$. Using apparatus, images and models, they multiply proper fractions and mixed numbers by whole numbers. Children continue to develop their understanding of fractions as numbers, measures and operators by finding fractions of numbers and quantities in real life situations.

## Measurement

Through a wide variety of practical experiences and hands-on resources, children extend their understanding of measurement. They convert larger to smaller related units of measure and vice-versa including length, capacity, weight, time and money. Children will convert between imperial (such as inches, pints, miles) and metric units (such as centimetres, litres, kilometres). Children will measure, calculate and solve problems involving perimeter of straight-sided, right-angled shapes (rectilinear) and learn to express this algebraically such as, $4+2 b=20$. They find and measure the area of these shapes with increasing accuracy. They begin to estimate volume.

## Geometry

Children will measure, identify and draw angles in degrees, developing a strong understanding of acute, obtuse, reflex and right angles. They use this knowledge to find missing angles and lengths in a variety of situations, including at a point, on a straight line and within a shape. Children will move (translate), reflect shapes and describe their new positions. Language will be used with increasing sophistication to compare and classify shapes based on their properties and size. They will be able to visualise 3-D shapes from 2-D diagrams. They will use their understanding or shapes to solve problems.

## Statistics

Children will complete, read and solve comparison, sum and difference problems using information presented in graphs, charts and tables, including timetables. They begin to decide which representations of data are the most appropriate and are able to justify their reasons.


Nascot Wood Junior School - Mathematics Intent and Implementation


Nascot Wood Junior School - Mathematics Intent and Implementation

## Working mathematically

By the end of year 6, children will structure their own investigations and solve a wide variety of increasingly complex problems. They will independently develop their own lines of enquiry and be expected to prove their solutions in a variety of ways including algebra, negative proof (use a counter example to prove the rule) and be able to communicate their results using accurate mathematical language. Children will demonstrate secure knowledge and confidence to talk in depth about mathematical concepts and explain their solutions, decisions and reasoning.

## Number

- Counting and understanding numbers

Children extend and apply their knowledge of place value for numbers up to and beyond one million (including decimals and negative numbers) in a variety of situations. Special numbers are extended to include common factors, common multiples and a deeper understanding of prime numbers. Children will be able to round numbers and identify what degree of accuracy is appropriate.

- Calculating

Children will be fluent in a wide range of mental and formal written calculation strategies for all operations, extending to long division (four digit numbers by two digit numbers) by the end of the year. They will apply estimation in a range of ways. Through investigations, they explore the effect of the order of operations including the use of brackets.

- Fractions including decimals and percentages

Children recall and using equivalences between simple fractions, decimals and percentages. Additionally, they are able to express fractions in their simplest form and calculate the decimal equivalent, for example $\frac{3}{8}=3 \div 8=0.375$.
Applying this understanding of equivalent fractions, children will order, add and subtract fractions (including mixed numbers and those with different denominators) by the end of the year e.g. $\frac{1}{3}+\frac{1}{4}+\square=1$. Using hands-on resources and images, they will multiply and divide proper fractions and mixed numbers by whole numbers e.g. $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$ and $\frac{1}{3} \div 2=\frac{1}{6}$. Children will solve problems involving the calculation of percentages linked to real life situations.

## Ratio and proportion

Pupils explore ratio and proportion through real life experiences such as changing the quantities in recipes (scaling), scale drawings and maps.

## Algebra

Throughout their primary experience children will have encountered algebra in a number of different situations which is drawn together and formalised in year 6 . By the end of the year, they will confidently use symbols and letters to represent variables and unknowns in mathematical situations that they already understand, for example, simple formula and equivalent expressions $a+b=b+a$. Children will describe number sequences and missing number calculations.

## Measurement

Through investigation and problem solving, children convert between a range of measurement units (including both imperial and metric). Calculation of perimeter and area is extended to include parallelograms and triangles. Additionally, they will explore the relationship between area and perimeter. They will know how to calculate, estimate and compare volume of cubes and cuboids identifying when it is appropriate to use formula.

## Geometry

Children will draw 2-D and build 3-D shapes with accuracy using given dimensions and angles. They will create nets of common 3-D shapes. They will consolidate their knowledge of angles within shapes and extend it to find missing angles in triangles, quadrilaterals and regular polygons. Children name parts of circles, including radius, diameter and circumference, and explore the relationships between these elements. Children will use four quadrant co-ordinate grids to describe positions, draw and translate simple shapes. Using their knowledge of the properties of shape, they will be able to predict missing co-ordinates and express these algebraically.

## Statistics

Children will increase their knowledge of different data representations to include interpreting and constructing pie charts (using their knowledge of angles, fractions and percentages) and line graphs (e.g. miles to km conversion). They will know when it is appropriate to use the mean as an average and how to calculate it.


Nascot Wood Junior School - Mathematics Intent and Implementation


Nascot Wood Junior School - Mathematics Intent and Implementation

## Curriculum Impact

- Deep and sustainable learning
- Ability to build on something already mastered
- Ability to reason about a concept and make connections to other concepts
- Procedural fluency with conceptual understanding - the understanding of how and why it all works
- Development of a growth mind-set - we are all mathematicians
- Resilience and perseverance
- Ability to thrive in a mathematically driven world Nascot Wood Junior School Mathematics Intent and Implementation



## Wider Impact

- KS2 results are consistently above national and Hertfordshire measures
- The school is consistently graded as outstanding by our Hertfordshire Improvement Partner
- Anecdotal evidence suggests that our past pupils do well at GCSE and A level, and are highly valued by secondary colleagues
- There is a large percentage of children each year who gain places at high performing secondary schools, both in the state and private sector


## We evaluate the impact of what we teach by...

- Carefully monitoring and reporting on the progress and attainment of individual children and groups of children, and ensuring that staff have access to this information to inform their planning
- Identifying gaps between disadvantaged children and other children, and ways to address gaps if they occur
- Regularly consulting with children
- Working in partnership with parents

This process of evaluation results in a continuous and relentless striving for marginal gains improvement

